4 research outputs found

    Conditional Generation from Unconditional Diffusion Models using Denoiser Representations

    Full text link
    Denoising diffusion models have gained popularity as a generative modeling technique for producing high-quality and diverse images. Applying these models to downstream tasks requires conditioning, which can take the form of text, class labels, or other forms of guidance. However, providing conditioning information to these models can be challenging, particularly when annotations are scarce or imprecise. In this paper, we propose adapting pre-trained unconditional diffusion models to new conditions using the learned internal representations of the denoiser network. We demonstrate the effectiveness of our approach on various conditional generation tasks, including attribute-conditioned generation and mask-conditioned generation. Additionally, we show that augmenting the Tiny ImageNet training set with synthetic images generated by our approach improves the classification accuracy of ResNet baselines by up to 8%. Our approach provides a powerful and flexible way to adapt diffusion models to new conditions and generate high-quality augmented data for various conditional generation tasks

    S-VolSDF: Sparse Multi-View Stereo Regularization of Neural Implicit Surfaces

    Full text link
    Neural rendering of implicit surfaces performs well in 3D vision applications. However, it requires dense input views as supervision. When only sparse input images are available, output quality drops significantly due to the shape-radiance ambiguity problem. We note that this ambiguity can be constrained when a 3D point is visible in multiple views, as is the case in multi-view stereo (MVS). We thus propose to regularize neural rendering optimization with an MVS solution. The use of an MVS probability volume and a generalized cross entropy loss leads to a noise-tolerant optimization process. In addition, neural rendering provides global consistency constraints that guide the MVS depth hypothesis sampling and thus improves MVS performance. Given only three sparse input views, experiments show that our method not only outperforms generic neural rendering models by a large margin but also significantly increases the reconstruction quality of MVS models. Project webpage: https://hao-yu-wu.github.io/s-volsdf/

    PathLDM: Text conditioned Latent Diffusion Model for Histopathology

    Full text link
    To achieve high-quality results, diffusion models must be trained on large datasets. This can be notably prohibitive for models in specialized domains, such as computational pathology. Conditioning on labeled data is known to help in data-efficient model training. Therefore, histopathology reports, which are rich in valuable clinical information, are an ideal choice as guidance for a histopathology generative model. In this paper, we introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images. Leveraging the rich contextual information provided by pathology text reports, our approach fuses image and textual data to enhance the generation process. By utilizing GPT's capabilities to distill and summarize complex text reports, we establish an effective conditioning mechanism. Through strategic conditioning and necessary architectural enhancements, we achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1

    GFlowNet-EM for learning compositional latent variable models

    Full text link
    Latent variable models (LVMs) with discrete compositional latents are an important but challenging setting due to a combinatorially large number of possible configurations of the latents. A key tradeoff in modeling the posteriors over latents is between expressivity and tractable optimization. For algorithms based on expectation-maximization (EM), the E-step is often intractable without restrictive approximations to the posterior. We propose the use of GFlowNets, algorithms for sampling from an unnormalized density by learning a stochastic policy for sequential construction of samples, for this intractable E-step. By training GFlowNets to sample from the posterior over latents, we take advantage of their strengths as amortized variational inference algorithms for complex distributions over discrete structures. Our approach, GFlowNet-EM, enables the training of expressive LVMs with discrete compositional latents, as shown by experiments on non-context-free grammar induction and on images using discrete variational autoencoders (VAEs) without conditional independence enforced in the encoder.Comment: ICML 2023; code: https://github.com/GFNOrg/GFlowNet-E
    corecore